

MCP6291/2/3/4/5

1.0 mA, 10 MHz Rail-to-Rail Op Amp

Features

• Gain Bandwidth Product: 10 MHz (typ.)

Supply Current: I_Q = 1.0 mA
 Supply Voltage: 2.4V to 5.5V
 Rail-to-Rail Input/Output

Extended Temperature Range: -40°C to +125°C

• Available in Single, Dual and Quad Packages

• Single with Chip Select (CS) (MCP6293)

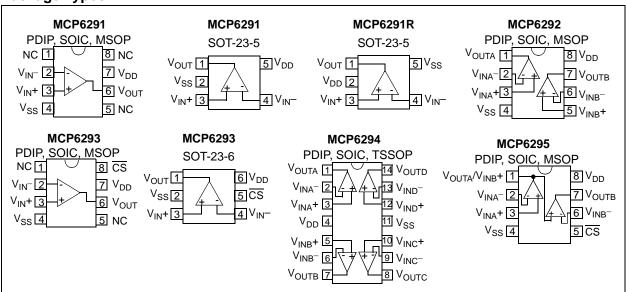
Dual with Chip Select (CS) (MCP6295)

Applications

- Automotive
- Portable Equipment
- Photodiode Amplifier
- Analog Filters
- Notebooks and PDAs
- · Battery-Powered Systems

Available Tools

- SPICE Macro Model (at www.microchip.com)
- FilterLab[®] Software (at www.microchip.com)


Description

The Microchip Technology Inc. MCP6291/2/3/4/5 family of operational amplifiers (op amps) provide wide bandwidth for the current. This family has a 10 MHz Gain Bandwidth Product (GBWP) and a 65° phase margin. This family also operates from a single supply voltage as low as 2.4V, while drawing 1 mA (typ.) quiescent current. In addition, the MCP6291/2/3/4/5 supports rail-to-rail input and output swing, with a common mode input voltage range of $\rm V_{DD} + 300~mV$ to $\rm V_{SS} - 300~mV$. This family of operational amplifiers is designed with Microchip's advanced CMOS process.

The MCP6295 has a Chip Select input (CS) for dual op amps in an 8-pin package. This device is manufactured by cascading the two op amps, with the output of op amp A being connected to the non-inverting input of op amp B. The CS input puts the device in a Low-power mode.

The MCP6291/2/3/4/5 family operates over the Extended Temperature Range of -40°C to +125°C. It also has a power supply range of 2.4V to 5.5V.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} - V _{SS}	7.0V
All Inputs and OutputsV _{SS} -	0.3V to V_{DD} + 0.3V
Difference Input Voltage	V _{DD} – V _{SS}
Output Short Circuit Current	Continuous
Current at Input Pins	±2 mA
Current at Output and Supply Pins	±30 mA
Storage Temperature	65°C to +150°C
Junction Temperature (T _J)	+150°C
ESD Protection On All Pins (HBM/MM)	≥ 4 kV/400V

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL SPECIFICATIONS

Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Offset						
Input Offset Voltage	Vos	-3.0	_	+3.0	mV	V _{CM} = V _{SS} (Note 1)
Input Offset Voltage (Extended Temperature)	Vos	-5.0	_	+5.0	mV	$T_A = -40$ °C to +125°C, $V_{CM} = V_{SS}$ (Note 1)
Input Offset Temperature Drift	$\Delta V_{OS}/\Delta T_{A}$	_	±1.7	_	μV/°C	$T_A = -40$ °C to +125°C, $V_{CM} = V_{SS}$ (Note 1)
Power Supply Rejection Ratio	PSRR	70	90	_	dB	V _{CM} = V _{SS} (Note 1)
Input Bias, Input Offset Current and I	mpedance					
Input Bias Current	I _B	_	±1.0	_	pА	Note 2
At Temperature	Ι _Β	_	50	200	рА	T _A = +85°C (Note 2)
At Temperature	I _B	_	2	5	nA	T _A = +125°C (Note 2)
Input Offset Current	los	_	±1.0	_	pА	Note 3
Common Mode Input Impedance	Z _{CM}	_	10 ¹³ 6	_	Ω pF	Note 3
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 3	_	ΩpF	Note 3
Common Mode (Note 4)						
Common Mode Input Range	V_{CMR}	V _{SS} - 0.3		$V_{DD} + 0.3$	V	
Common Mode Rejection Ratio	CMRR	70	85	_	dB	$V_{CM} = -0.3V$ to 2.5V, $V_{DD} = 5V$
Common Mode Rejection Ratio	CMRR	65	80	_	dB	$V_{CM} = -0.3V$ to 5.3V, $V_{DD} = 5V$
Open-Loop Gain						
DC Open-Loop Gain (Large Signal)	A _{OL}	90	110	_	dB	$V_{OUT} = 0.2V \text{ to } V_{DD} - 0.2V,$ $V_{CM} = V_{SS} \text{ (Note 1)}$
Output						
Maximum Output Voltage Swing	V _{OL} , V _{OH}	V _{SS} + 15	_	V _{DD} – 15	mV	
Output Short Circuit Current	I _{SC}		±25		mA	
Power Supply						
Supply Voltage	V_{DD}	2.4	_	5.5	V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$
Quiescent Current per Amplifier	IQ	0.7	1.0	1.3	mA	I _O = 0

- Note 1: The MCP6295's V_{CM} for op amp B (pins V_{OUTA}/V_{INB} + and V_{INB} -) is V_{SS} + 100 mV.
 - 2: The current at the MCP6295's V_{INB} —pin is specified by I_B only.
 - 3: This specification does not apply to the MCP6295's V_{OUTA}/V_{INB} + pin.
 - 4: The MCP6295's V_{INB} pin (op amp B) has a common mode range (V_{CMR}) of V_{SS} + 100 mV to V_{DD} 100 mV. The MCP6295's V_{OUTA}/V_{INB} + pin (op amp B) has a voltage range specified by V_{OH} and V_{OL} .

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = +2.4$ V to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2,\,R_L$ = 10 $k\Omega$ to $V_{DD}/2$ and C_L = 60 pF. **Parameters** Min Тур Max Units Conditions Sym **AC Response** Gain Bandwidth Product **GBWP** 10.0 MHz Phase Margin at Unity-Gain PM65 Slew Rate SR 7 V/µs Noise Input Noise Voltage E_{ni} 3.5 $\mu V_{P\text{-}P}$ f = 0.1 Hz to 10 Hz Input Noise Voltage Density e_{ni} 8.7 nV/√Hz f = 10 kHz Input Noise Current Density 3 fA/√Hz f = 1 kHzi_{ni}

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherw	ise indicated, V	_{DD} = +2.4V 1	to +5.5V and	d V _{SS} = GNI) .	
Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Operating Temperature Range	T _A	-40	_	+125	°C	Note
Storage Temperature Range	T _A	-65	_	+150	°C	
Thermal Package Resistances						
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	256	_	°C/W	
Thermal Resistance, 6L-SOT-23	θ_{JA}	_	230	_	°C/W	
Thermal Resistance, 8L-PDIP	θ_{JA}	_	85	_	°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W	
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	_	°C/W	
Thermal Resistance, 14L-PDIP	θ_{JA}	_	70	_	°C/W	
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W	
Thermal Resistance, 14L-TSSOP	θ_{JA}	_	100	_	°C/W	

Note: The Junction Temperature (T_J) must not exceed the Absolute Maximum specification of +150°C.

MCP6293/MCP6295 CHIP SELECT (CS) SPECIFICATIONS

	Electrical Characteristics: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = +2.4$ V to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $R_L = 10$ kΩ to $V_{DD}/2$ and $C_L = 60$ pF.									
Parameters	Sym	Min	Тур	Max	Units	Conditions				
CS Low Specifications										
CS Logic Threshold, Low	V_{IL}	V _{SS}	_	0.2 V _{DD}	V					
CS Input Current, Low	I _{CSL}	_	0.01	_	μΑ	CS = V _{SS}				
CS High Specifications										
CS Logic Threshold, High	V_{IH}	0.8 V _{DD}		V_{DD}	٧					
CS Input Current, High	I _{CSH}	_	0.7	2	μΑ	CS = V _{DD}				
GND Current per Amplifier	I _{SS}	_	-0.7	_	μΑ	CS = V _{DD}				
Amplifier Output Leakage	_	_	0.01	_	μΑ	CS = V _{DD}				
Dynamic Specifications (Note 1)										
CS Low to Valid Amplifier Output, Turn-on Time	t _{ON}		4	10	μs	$\overline{\text{CS}} \text{ Low} \le 0.2 \text{ V}_{\text{DD}}, \text{ G} = +1 \text{ V/V}, \\ \text{V}_{\text{IN}} = \text{V}_{\text{DD}}/2, \text{ V}_{\text{OUT}} = 0.9 \text{ V}_{\text{DD}}/2, \\ \text{V}_{\text{DD}} = 5.0 \text{V}$				
CS High to Amplifier Output High-Z	t _{OFF}	_	0.01	_	μs	$\overline{\text{CS}}$ High $\geq 0.8 \text{ V}_{\text{DD}}$, G = +1 V/V, V _{IN} = V _{DD} /2, V _{OUT} = 0.1 V _{DD} /2				
Hysteresis	V _{HYST}	_	0.6	_	V	$V_{DD} = 5V$				

Note 1: The input condition (V_{IN}) specified applies to both op amp A and B of the MCP6295. The dynamic specification is tested at the output of op amp B (V_{OUTB}).

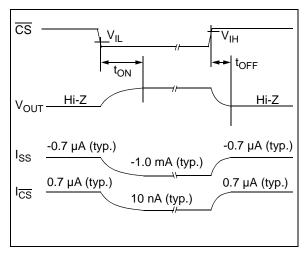


FIGURE 1-1: Timing Diagram for the Chip Select (CS) pin on the MCP6293 and MCP6295.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = +2.4 V$ to +5.5 V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$ and $C_L = 60 \text{ pF}$.

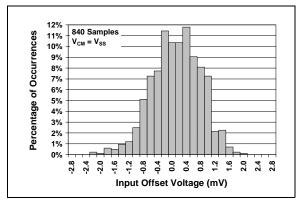
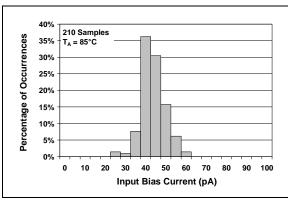
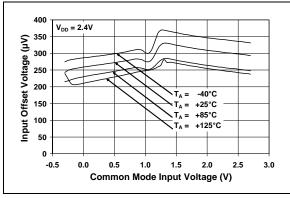




FIGURE 2-1: Input Offset Voltage.

FIGURE 2-2: Input Bias Current at $T_A = +85$ °C.

FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 2.4V$.

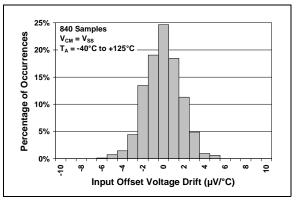
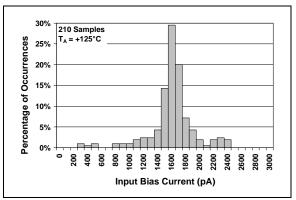
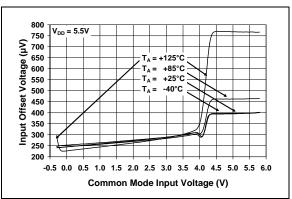




FIGURE 2-4: Input Offset Voltage Drift.

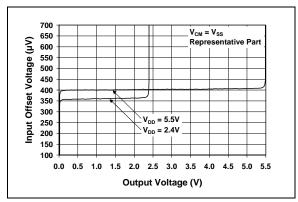


FIGURE 2-5: Input Bias Current at $T_A = +125$ °C.

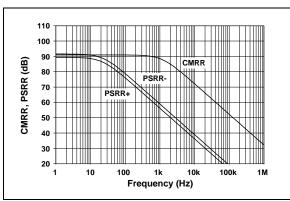
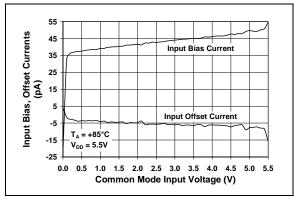
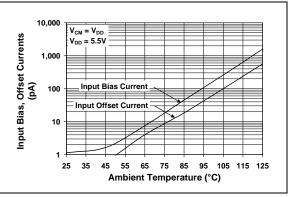
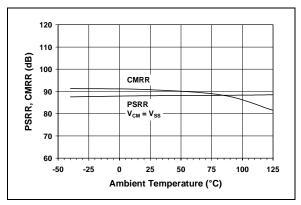


FIGURE 2-6: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.


Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.4V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 10 k Ω to $V_{DD}/2$ and C_L = 60 pF.


FIGURE 2-7: Input Offset Voltage vs. Output Voltage.


FIGURE 2-8: CMRR, PSRR vs. Frequency.

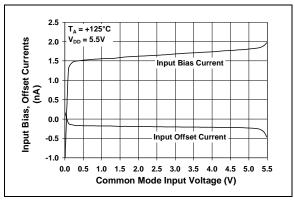

FIGURE 2-9: Input Bias, Offset Currents vs. Common Mode Input Voltage at $T_A = +85$ °C.

FIGURE 2-10: Input Bias, Input Offset Currents vs. Ambient Temperature.

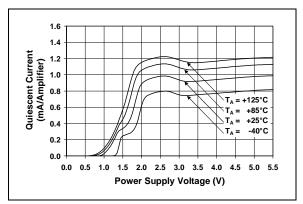


FIGURE 2-11: CMRR, PSRR vs. Ambient Temperature.

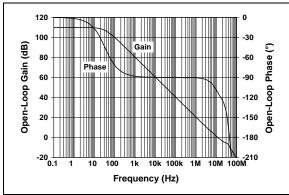
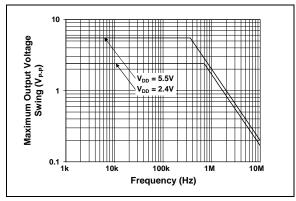
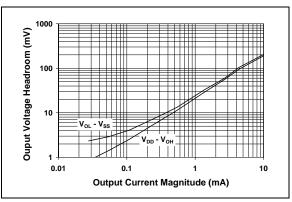


FIGURE 2-12: Input Bias, Offset Currents vs. Common Mode Input Voltage at $T_A = +125$ °C.


Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.4V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 10 k Ω to $V_{DD}/2$ and C_L = 60 pF.


FIGURE 2-13: Quiescent Current vs. Power Supply Voltage.

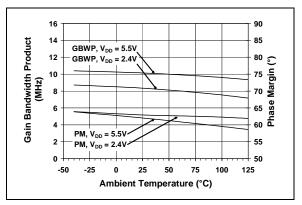

FIGURE 2-14: Open-Loop Gain, Phase vs. Frequency.

FIGURE 2-15: Maximum Output Voltage Swing vs. Frequency.

FIGURE 2-16: Output Voltage Headroom vs. Output Current Magnitude.

FIGURE 2-17: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

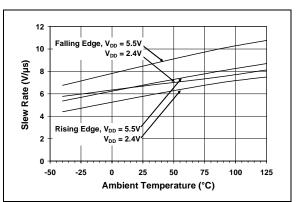


FIGURE 2-18: Slew Rate vs. Ambient Temperature.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.4V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 10 k Ω to $V_{DD}/2$ and C_L = 60 pF.

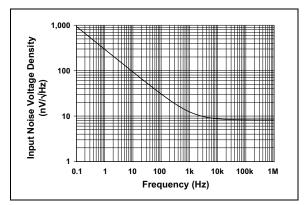
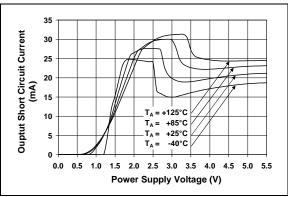



FIGURE 2-19: vs. Frequency.

Input Noise Voltage Density

FIGURE 2-20: Output Short Circuit Current vs. Power Supply Voltage.

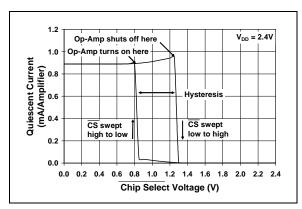
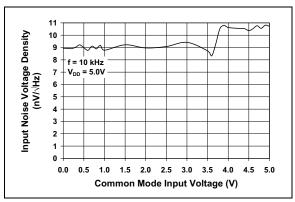



FIGURE 2-21: Quiescent Current vs. Chip Select (CS) Voltage at $V_{DD} = 2.4V$ (MCP6293 and MCP6295 only).

FIGURE 2-22: Input Noise Voltage Density vs. Common Mode Input Voltage at 10 kHz.

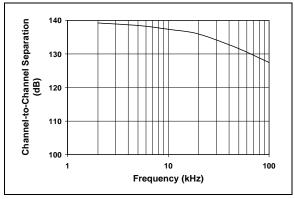


FIGURE 2-23: Channel-to-Channel Separation vs. Frequency (MCP6292, MCP6294 and MCP6295 only).

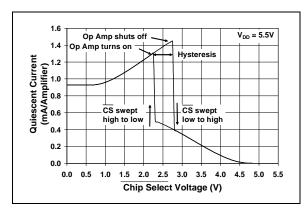
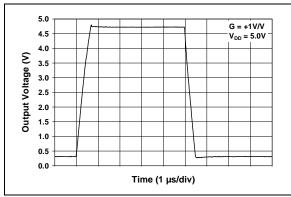
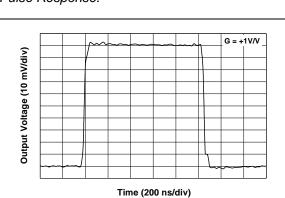
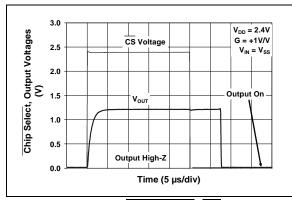
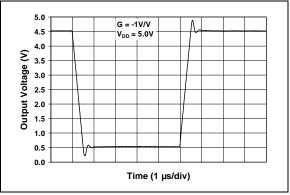
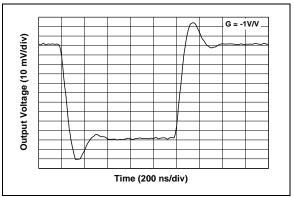



FIGURE 2-24: Quiescent Current vs. Chip Select (CS) Voltage at $V_{DD} = 5.5V$ (MCP6293 and MCP6295 only).

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.4V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 10 k Ω to $V_{DD}/2$ and C_L = 60 pF.

FIGURE 2-25: Large-Signal Non-inverting Pulse Response.


FIGURE 2-26: Small-Signal Non-inverting Pulse Response.

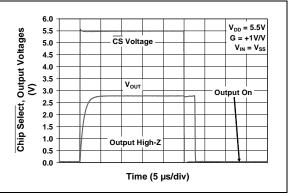

FIGURE 2-27: Chip Select (CS) to Amplifier Output Response Time at $V_{DD} = 2.4V$ (MCP6293 and MCP6295 only).

FIGURE 2-28: Large-Signal Inverting Pulse Response.

FIGURE 2-29: Small-Signal Inverting Pulse Response.

FIGURE 2-30: Chip Select $\overline{(CS)}$ to Amplifier Output Response Time at $V_{DD} = 5.5V$ (MCP6293 and MCP6295 only).

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).

TABLE 3-1: PIN FUNCTION TABLE FOR SINGLE OP AMPS

MCP6291 (PDIP, SOIC, MSOP)	MCP6291 (SOT-23-5)	MCP6271R (SOT-23-5)	MCP6293 (PDIP, SOIC, MSOP)	MCP6293 (SOT-23-6)	Symbol	Description
6	1	1	6	1	V _{OUT}	Analog Output
2	4	4	2	4	V _{IN} -	Inverting Input
3	3	3	3	3	V _{IN} +	Non-inverting Input
7	5	2	7	6	V_{DD}	Positive Power Supply
4	2	5	4	2	V_{SS}	Negative Power Supply
_	_		8	5	CS	Chip Select
1,5,8	_	_	1,5	_	NC	No Internal Connection

TABLE 3-2: PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS

MCP6292	MCP6294	MCP6295	Symbol	Description
1	1		V _{OUTA}	Analog Output (op amp A)
2	2	2	V _{INA} -	Inverting Input (op amp A)
3	3	3	V _{INA} +	Non-inverting Input (op amp A)
8	4	8	V_{DD}	Positive Power Supply
5	5		V _{INB} +	Non-inverting Input (op amp B)
6	6	6	V _{INB} -	Inverting Input (op amp B)
7	7	7	V _{OUTB}	Analog Output (op amp B)
_	8		V _{outc}	Analog Output (op amp C)
_	9		V _{INC} -	Inverting Input (op amp C)
_	10	_	V _{INC} +	Non-inverting Input (op amp C)
4	11	4	V_{SS}	Negative Power Supply
_	12		V _{IND} +	Non-inverting Input (op amp D)
_	13	_	V _{IND} -	Inverting Input (op amp D)
_	14	_	V _{OUTD}	Analog Output (op amp D)
_	_	1	V _{OUTA} /V _{INB} +	Analog Output (op amp A)/Non-inverting Input (op amp B)
_	_	5	CS	Chip Select

3.1 Analog Outputs

The output pins are low-impedance voltage sources.

3.2 Analog Inputs

The non-inverting and inverting inputs are high-impedance CMOS inputs with low bias currents.

3.3 MCP6295's V_{OUTA}/V_{INB}+ Pin

For the MCP6295 only, the output of op amp A is connected directly to the non-inverting input of op amp B; this is the V_{OUTA}/V_{INB} + pin. This connection makes it possible to provide a Chip Select pin for duals in 8-pin packages.

3.4 CS Digital Input

This is a CMOS, Schmitt-triggered input that places the part into a low power mode of operation.

3.5 Power Supply (V_{SS} and V_{DD})

The positive power supply (V_{DD}) is 2.4V to 5.5V higher than the negative power supply (V_{SS}). For normal operation, the other pins are between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration). In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need a local bypass capacitor (typically 0.01 μF to 0.1 μF) within 2 mm of the V_{DD} pin. These parts need to use a bulk capacitor (within 100 mm), which can be shared with nearby analog parts.

4.0 APPLICATION INFORMATION

The MCP6291/2/3/4/5 family of op amps is manufactured using Microchip's state-of-the-art CMOS process, specifically designed for low-cost, low-power and general purpose applications. The low supply voltage, low quiescent current and wide bandwidth makes the MCP6291/2/3/4/5 ideal for battery-powered applications.

4.1 Rail-to-Rail Inputs

The MCP6291/2/3/4/5 op amp is designed to prevent phase reversal when the input pins exceed the supply voltages. Figure 4-1 shows the input voltage exceeding the supply voltage without any phase reversal.

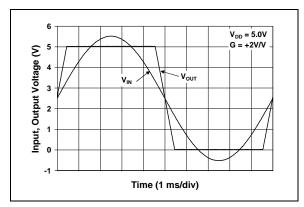
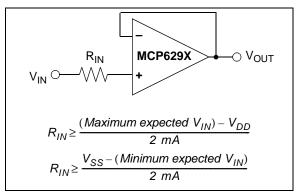
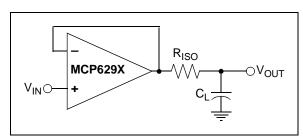



FIGURE 4-1: The MCP6291/2/3/4/5 Show No Phase Reversal.

The input stage of the MCP6291/2/3/4/5 op amps use two differential CMOS input stages in parallel. One operates at low common mode input voltage (V_{CM}), while the other operates at high V_{CM}. With this topology, the device operates with V_{CM} up to 0.3 mV above V_{DD} and 0.3 mV below V_{SS}. The Input Offset Voltage (V_{OS}) is measured at V_{CM} = V_{SS} – 0.3 mV and V_{DD} + 0.3 mV to ensure proper operation.

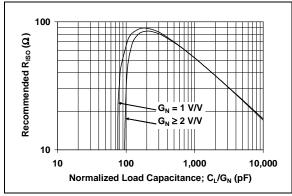
Input voltages that exceed the absolute maximum voltage ($V_{SS}-0.3V$ to $V_{DD}+0.3V$) can cause excessive current to flow into or out of the input pins. Current beyond ± 2 mA can cause reliability problems. Applications that exceed this rating must be externally limited with a resistor, as shown in Figure 4-2.

FIGURE 4-2: Input Current Limiting Resistor (R_{IN}) .


4.2 Rail-to-Rail Output

The output voltage range of the MCP6291/2/3/4/5 op amp is $V_{DD}-15~mV$ (min.) and $V_{SS}+15~mV$ (max.) when $R_L=10~k\Omega$ is connected to $V_{DD}/2$ and $V_{DD}=5.5V$. Refer to Figure 2-16 for more information.

4.3 Capacitive Loads


Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity-gain buffer (G=+1) is the most sensitive to capacitive loads, though all gains show the same general behavior.

When driving large capacitive loads with these op amps (e.g., > 100~pF when G = +1), a small series resistor at the output (R_{ISO} in Figure 4-3) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitive load.

FIGURE 4-3: Output Resistor, R_{ISO} stabilizes large capacitive loads.

Figure 4-4 gives recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N), where G_N is the circuit's noise gain. For non-inverting gains, G_N and the Signal Gain are equal. For inverting gains, G_N is 1+|Signal Gain| (e.g., -1 V/V gives G_N = +2 V/V).

FIGURE 4-4: Recommended R_{ISO} Values for Capacitive Loads.

After selecting $R_{\rm ISO}$ for your circuit, double-check the resulting frequency response peaking and step response overshoot. Modify $R_{\rm ISO}$'s value until the response is reasonable. Bench evaluation and simulations with the MCP6291/2/3/4/5 SPICE macro model are helpful.

4.4 MCP629X Chip Select (CS)

The MCP6293 and MCP6295 are single and dual op amps with Chip Select (\overline{CS}), respectively. When \overline{CS} is pulled high, the supply current drops to 0.7 μ A (typ.) and flows through the \overline{CS} pin to V_{SS} . When this happens, the amplifier output is put into a high-impedance state. By pulling \overline{CS} low, the amplifier is enabled. If the \overline{CS} pin is left floating, the amplifier may not operate properly. Figure 1-1 shows the output voltage and supply current response to a \overline{CS} pulse.

4.5 Cascaded Dual Op Amps (MCP6295)

The MCP6295 is a dual op amp with Chip Select (CS). The Chip Select input is available on what would be the non-inverting input of a standard dual op amp (pin 5). This is available because the output of op amp A connects to the non-inverting input of op amp B, as shown in Figure 4-5. The Chip Select input, which can be connected to a microcontroller I/O line, puts the device in Low-power mode. Refer to Section 4.3 "MCP6293/5 Chip Select (CS)".

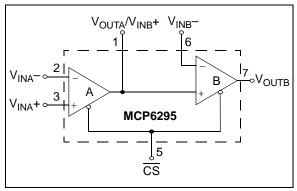
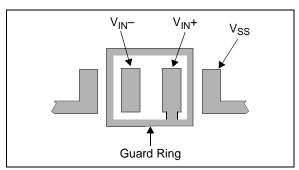


FIGURE 4-5: Cascaded Gain Amplifier.

The output of op amp A is loaded by the input impedance of op amp B, which is typically $10^{13}\Omega||6$ pF, as specified in the DC specification table (Refer to **Section 4.3 "Capacitive Loads"** for further details regarding capacitive loads).

The common mode input range of these op amps is specified in the data sheet as $V_{SS}-300\,\text{mV}$ and $V_{DD}+300\,\text{mV}$. However, since the output of op amp A is limited to V_{OL} and V_{OH} (20 mV from the rails with a 10 k Ω load), the non-inverting input range of op amp B is limited to the common mode input range of $V_{SS}+20\,\text{mV}$ and $V_{DD}-20\,\text{mV}$.


4.6 Supply Bypass

With this family of operational amplifiers, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good high-frequency performance. It also needs a bulk capacitor (i.e., 1 μ F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.

4.7 PCB Surface Leakage

In applications where low input bias current is critical, Printed Circuit Board (PCB) surface-leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA of current to flow, which is greater than the MCP6291/2/3/4/5 family's bias current at 25°C (1 pA, typ.).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-6.

FIGURE 4-6: Example Guard Ring Layout for Inverting Gain.

- For Inverting Gain and Transimpedance Amplifiers (convert current to voltage, such as photo detectors):
 - a. Connect the guard ring to the non-inverting input pin (V_{IN}+). This biases the guard ring to the same reference voltage as the op amp (e.g., V_{DD}/2 or ground).
 - Connect the inverting pin (V_{IN}-) to the input with a wire that does not touch the PCB surface.
- 2. Non-inverting Gain and Unity-Gain Buffer:
 - a. Connect the non-inverting pin (V_{IN}+) to the input with a wire that does not touch the PCB surface.
 - Connect the guard ring to the inverting input pin (V_{IN}-). This biases the guard ring to the common mode input voltage.

4.8 Application Circuits

4.8.1 MULTIPLE FEEDBACK LOW-PASS FILTER

The MCP6291/2/3/4/5 op amp can be used in activefilter applications. Figure 4-7 shows an inverting, thirdorder, multiple feedback low-pass filter that can be used as an anti-aliasing filter.

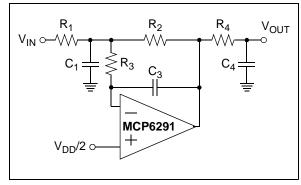
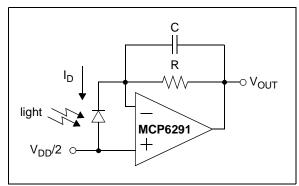


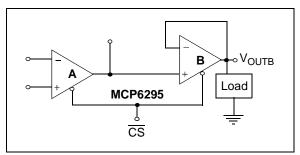
FIGURE 4-7: Multiple Feedback Low-Pass Filter.

This filter, and others, can be designed using Microchip's FilterLab[®] software, which is available on our web site (www.microchip.com).

4.8.2 PHOTODIODE AMPLIFIER

Figure 4-8 shows a photodiode biased in the photovoltaic mode for high precision. The resistor R converts the diode current I_D to the voltage V_{OUT} . The capacitor is used to limit the bandwidth or to stabilize the circuit against the diode's capacitance (it is not always needed).




FIGURE 4-8: Photodiode Amplifier.

4.8.3 CASCADED OP AMP APPLICATIONS

The MCP6295 provides the flexibility of Low-power mode for dual op amps in an 8-pin package. The MCP6295 eliminates the added cost and space in battery-powered applications by using two single op amps with Chip Select lines or a 10-pin device with one Chip Select line for both op amps. Since the two op amps are internally cascaded, this device cannot be used in circuits that require active or passive elements between the two op amps. However, there are several applications where this op amp configuration with Chip Select line becomes suitable. The circuits below show possible applications for this device.

4.8.3.1 Load Isolation

With the cascaded op amp configuration, op amp B can be used to isolate the load from op amp A. In applications where op amp A is driving capacitive or low resistance loads in the feedback loop (such as an integrator circuit or filter circuit), the op amp may not have sufficient source current to drive the load. In this case, op amp B can be used as a buffer.

FIGURE 4-9: Isolating the Load with a Buffer.

4.8.3.2 Cascaded Gain

Figure 4-10 shows a cascaded gain circuit configuration with Chip Select. Op amps A and B are configured in a non-inverting amplifier configuration. In this configuration, it is important to note that the input offset voltage of op amp A is amplified by the gain of op amp A and B, as shown below:

$$\begin{split} V_{OUT} &= V_{IN}G_AG_B + V_{OSA}G_AG_B + V_{OSB}G_B \\ \text{Where:} \\ & G_A = \text{op amp A gain} \\ & G_B = \text{op amp B gain} \\ & V_{OSA} = \text{op amp A input offset voltage} \\ & V_{OSB} = \text{op amp B input offset voltage} \end{split}$$

Therefore, it is recommended to set most of the gain with op amp A and use op amp B with relatively small gain (e.g., a unity-gain buffer).

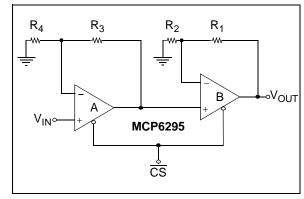


FIGURE 4-10: Cascaded Gain Circuit Configuration.

4.8.3.3 Difference Amplifier

Figure 4-11 shows op amp A as a difference amplifier with Chip Select. In this configuration, it is recommended to use well-matched resistors (e.g., 0.1%) to increase the Common Mode Rejection Ratio (CMRR). Op amp B can be used for additional gain or as a unitygain buffer to isolate the load from the difference amplifier.

FIGURE 4-11: Difference Amplifier Circuit.

4.8.3.4 Buffered Non-inverting Integrator

Figure 4-12 shows a lossy non-inverting integrator that is buffered and has a Chip Select input. Op amp A is configured as a non-inverting integrator. In this configuration, matching the impedance at each input is recommended. R $_{\rm F}$ is used to provide a feedback loop at frequencies << 1/(2 $\pi R_1 C_1$) and makes this a lossy integrator (it has a finite gain at DC). Op amp B is used to isolate the load from the integrator.

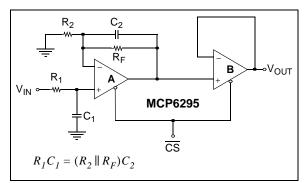


FIGURE 4-12: Buffered Non-inverting Integrator with Chip Select.

4.8.3.5 Inverting Integrator with Active Compensation and Chip Select

Figure 4-13 uses an active compensator (op amp B) to compensate for the non-ideal op amp characteristics introduced at higher frequencies. This circuit uses op amp B as a unity-gain buffer to isolate the integration capacitor C_1 from op amp A and drives the capacitor with low-impedance source. Since both op amps are matched very well, they provide a high quality integrator.

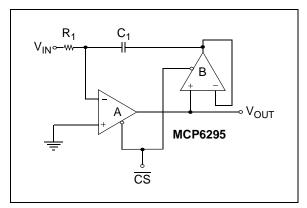


FIGURE 4-13: Integrator Circuit with Active Compensation.

4.8.3.6 Second-Order MFB Low-Pass Filter with an Extra Pole-Zero Pair

Figure 4-14 is <u>a second-order</u> multiple feedback low-pass filter with <u>Chip Select</u>. Use the FilterLab[®] software from Microchip to determine the R and C values for the op amp A's second-order filter. Op amp B can be used to add a pole-zero pair using C_3 , R_6 and R_7 .

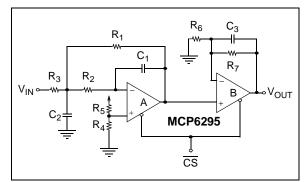


FIGURE 4-14: Second-Order Multiple Feedback Low-Pass Filter with an Extra Pole-Zero Pair.

4.8.3.7 Second-Order Sallen-Key Low-Pass Filter with an Extra Pole-Zero Pair

Figure 4-15 is a second-order, Sallen-Key low-pass filter with $\overline{\text{Chip Select}}$. Use the FilterLab software from Microchip to determine the R and C values for the op amp A's second-order filter. Op amp B can be used to add a pole-zero pair using C₃, R₅ and R₆.

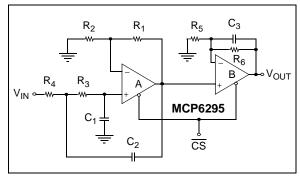


FIGURE 4-15: Second-Order Sallen-Key Low-Pass Filter with an Extra Pole-Zero Pair and Chip Select.

4.8.3.8 Capacitorless Second-Order Low-Pass filter with Chip Select

The low-pass filter shown in Figure 4-16 does not require external capacitors and uses only three external resistors; the op amp's GBWP sets the corner frequency. R_1 and R_2 are used to set the circuit gain and R_3 is used to set the Q. To avoid gain peaking in the frequency response, Q needs to be low (lower values need to be selected for R_3). Note that the amplifier bandwidth varies greatly over temperature and process. However, this configuration provides a low cost solution for applications with high bandwidth requirements.

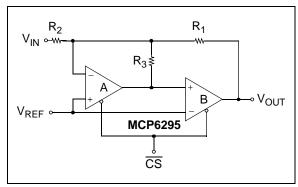


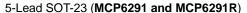
FIGURE 4-16: <u>Capacitorles</u>s Second-Order Low-Pass Filter with Chip Select.

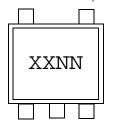
5.0 DESIGN TOOLS

Microchip provides the basic design tools needed for the MCP6291/2/3/4/5 family of op amps.

5.1 SPICE Macro Model

The latest SPICE macro model for the MCP6291/2/3/4/5 op amps is available on our web site at www.microchip.com. This model is intended to be an initial design tool that works well in the op amp's linear region of operation at room temperature. See the macro model file for information on its capabilities.

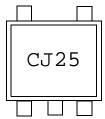

Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

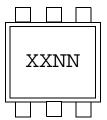

5.2 FilterLab[®] Software

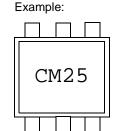
Microchip's FilterLab software is an innovative tool that simplifies analog active-filter (using op amps) design. Available at no cost from our web site at www.microchip.com, the FilterLab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information




Device	Code
MCP6291	CJNN
MCP6291R	EVNN


Note: Applies to 5-Lead SOT-23

6-Lead SOT-23 (MCP6283)

8-Lead MSOP

Example:

8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)

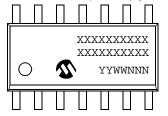
Legend: XX...X Customer specific information*

YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

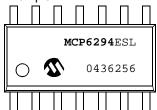
* Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.


MCP6291/2/3/4/5

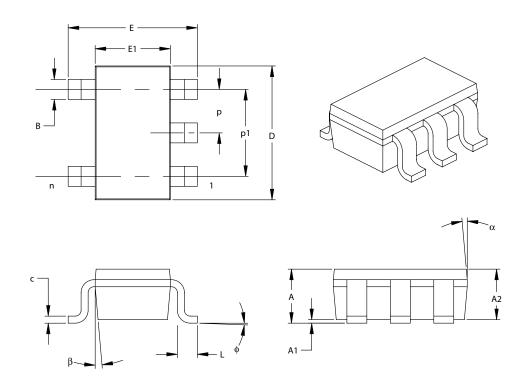
Package Marking Information (Continued)

14-Lead PDIP (300 mil) (MCP6294)

14-Lead SOIC (150 mil) (MCP6294)


14-Lead TSSOP (MCP6294)

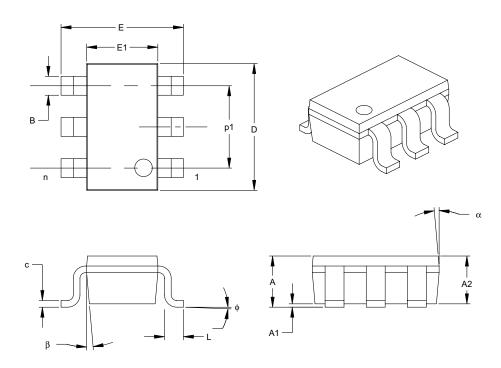
Example:


Example:

Example:

5-Lead Plastic Small Outline Transistor (OT) (SOT-23)

	Units		INCHES*		N	MILLIMETERS	
Dimension Lim	its	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		5	•		5	
Pitch	р		.038			0.95	
Outside lead pitch (basic)	p1		.075			1.90	
Overall Height	Α	.035	.046	.057	0.90	1.18	1.45
Molded Package Thickness	A2	.035	.043	.051	0.90	1.10	1.30
Standoff	A1	.000	.003	.006	0.00	0.08	0.15
Overall Width	E	.102	.110	.118	2.60	2.80	3.00
Molded Package Width	E1	.059	.064	.069	1.50	1.63	1.75
Overall Length	D	.110	.116	.122	2.80	2.95	3.10
Foot Length	L	.014	.018	.022	0.35	0.45	0.55
Foot Angle	ф	0	5	10	0	5	10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.014	.017	.020	0.35	0.43	0.50
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10


^{*}Controlling Parameter

Notes:

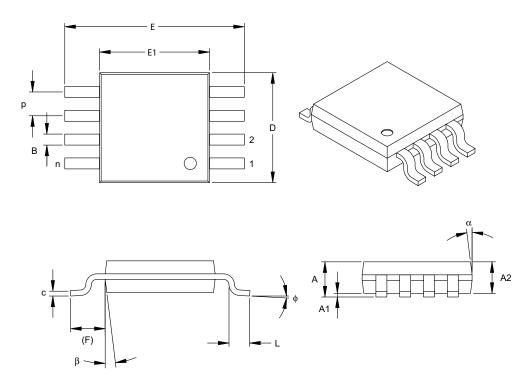
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

EIAJ Equivalent: SC-74A Drawing No. C04-091

6-Lead Plastic Small Outline Transistor (CH) (SOT-23)

	Units	Units INCHES*				MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		6			6		
Pitch	р		.038			0.95		
Outside lead pitch (basic)	p1		.075			1.90		
Overall Height	Α	.035	.046	.057	0.90	1.18	1.45	
Molded Package Thickness	A2	.035	.043	.051	0.90	1.10	1.30	
Standoff	A1	.000	.003	.006	0.00	0.08	0.15	
Overall Width	E	.102	.110	.118	2.60	2.80	3.00	
Molded Package Width	E1	.059	.064	.069	1.50	1.63	1.75	
Overall Length	D	.110	.116	.122	2.80	2.95	3.10	
Foot Length	L	.014	.018	.022	0.35	0.45	0.55	
Foot Angle	ф	0	5	10	0	5	10	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.014	.017	.020	0.35	0.43	0.50	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	

*Controlling Parameter


Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127 mm) per side.

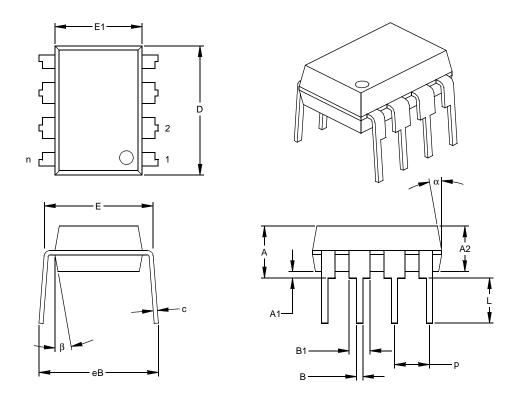
JEITA (formerly EIAJ) equivalent: SC-74A

Drawing No. C04-120

8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

	Units		INCHES		М	ILLIMETERS ³	+
Dimension Lim	nits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.026 BSC			0.65 BSC	
Overall Height	Α	-	-	.043	-	-	1.10
Molded Package Thickness	A2	.030	.033	.037	0.75	0.85	0.95
Standoff	A1	.000	-	.006	0.00	-	0.15
Overall Width	E		.193 TYP.		4.90 BSC		
Molded Package Width	E1		.118 BSC		3.00 BSC		
Overall Length	D		.118 BSC		3.00 BSC		
Foot Length	L	.016	.024	.031	0.40	0.60	0.80
Footprint (Reference)	F		.037 REF			0.95 REF	
Foot Angle	ф	0°	-	8°	0°	-	8°
Lead Thickness	С	.003	.006	.009	0.08	-	0.23
Lead Width	В	.009	.012	.016	0.22	-	0.40
Mold Draft Angle Top	α	5 ^{§°}	-	15°	5°	-	15°
Mold Draft Angle Bottom	β	5 ^{5°}	1	15°	5°	-	15°

*Controlling Parameter

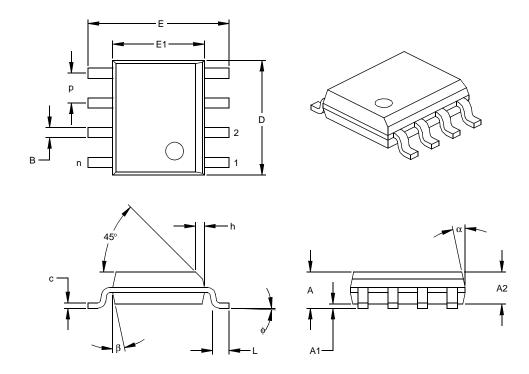

Notes

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-187

Drawing No. C04-111

8-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

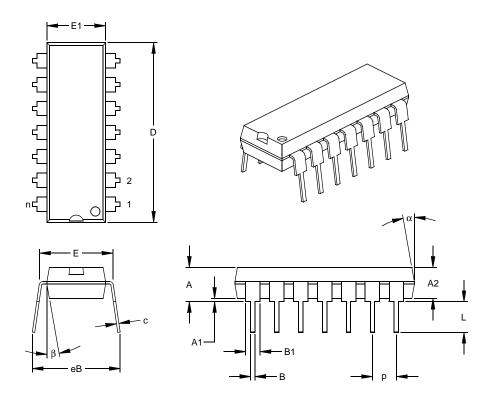

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Small Outline (SN) - Narrow, 150 mil (SOIC)


	Units		INCHES*		MILLIMETERS		
Dimension	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	Е	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057

^{*} Controlling Parameter § Significant Characteristic

14-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.740	.750	.760	18.80	19.05	19.30
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

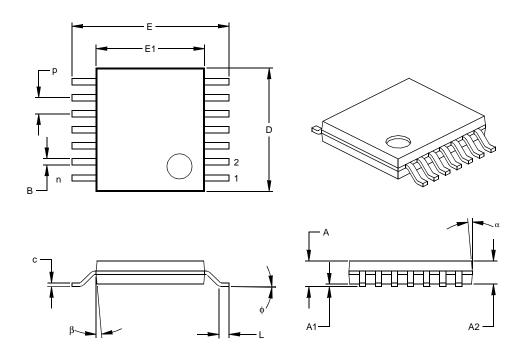
.010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-005

^{*} Controlling Parameter § Significant Characteristic

14-Lead Plastic Small Outline (SL) - Narrow, 150 mil (SOIC)

	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	Е	.228	.236	.244	5.79	5.99	6.20
Molded Package Width	E1	.150	.154	.157	3.81	3.90	3.99
Overall Length	D	.337	.342	.347	8.56	8.69	8.81
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MS-012

Drawing No. C04-065

^{*} Controlling Parameter § Significant Characteristic

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

	Units	INCHES			MILLIMETERS*		
Dimension	Limits	MIN	MOM	MAX	MIN	NOM	MAX
Number of Pins	n		14			14	
Pitch	р		.026			0.65	
Overall Height	Α			.043			1.10
Molded Package Thickness	A2	.033	.035	.037	0.85	0.90	0.95
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Overall Width	Е	.246	.251	.256	6.25	6.38	6.50
Molded Package Width	E1	.169	.173	.177	4.30	4.40	4.50
Molded Package Length	D	.193	.197	.201	4.90	5.00	5.10
Foot Length	L	.020	.024	.028	0.50	0.60	0.70
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	B1	.007	.010	.012	0.19	0.25	0.30
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

JEDEC Equivalent: MO-153

Drawing No. C04-087

^{*} Controlling Parameter § Significant Characteristic

APPENDIX A: REVISION HISTORY

Revision A (June 2003)

Original data sheet release.

Revision B (October 2003)

Revision C (June 2004)

Revision D (December 2004)

The following is the list of modifications:

- 1. Added SOT-23-5 packages for the MCP6291 and MCP6291R single op amps.
- 2. Added SOT-23-6 package for the MCP6293 single op amp.
- 3. Added Section 3.0 "Pin Descriptions".
- 4. Corrected application circuits (Section 4.8 "Application Circuits").
- 5. Added SOT-23-5 and SOT-23-6 packages and corrected package marking information (Section 6.0 "Packaging Information").
- 6. Added Appendix A: Revision History.

MCP6291/2/3/4/5

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. —	<u>X</u>	/XX	Exa	Examples:				
 Device Tem	 perature Pa	ackage	a)	MCP6291-E/SN:	Extended Temperature, 8LD SOIC package.			
R	ange	·	b)	MCP6291-E/MS:	Extended Temperature, 8LD MSOP package.			
			c)	MCP6291-E/P:	Extended Temperature, 8LD PDIP package.			
Device:	MCP6291: MCP6291T:	Single Op Amp Single Op Amp (Tape and Reel) (SOIC, MSOP, SOT-23-5)	d)	MCP6291T-E/OT:	Tape and Reel, Extended Temperature, 5LD SOT-23 package.			
	MCP6291RT:	Single Op Amp (Tape and Reel) (SOT-23-5)	a)	MCP6292-E/SN:	Extended Temperature, 8LD SOIC package.			
	MCP6292: MCP6292T:	Dual Op Amp Dual Op Amp	b)	MCP6292-E/MS:	Extended Temperature, 8LD MSOP package.			
	MCP6293:	(Tape and Reel) (SO <u>IC, MSOP)</u> Single Op Amp with <u>Chip Select</u>	c)	MCP6292-E/P:	Extended Temperature, 8LD PDIP package.			
	MCP6293T: MCP6294:	Single Op Amp with Chip Select (Tape and Reel) (SOIC, MSOP, SOT-23-6) Quad Op Amp	d)	MCP6292T-E/SN:	Tape and Reel, Extended Temperature, 8LD SOIC package.			
	MCP6294T:	Quad Op Amp (Tape and Reel) (SOIC, TSSOP) Dual Op Amp with Chip Select Dual Op Amp with Chip Select	a)	MCP6293-E/SN:	Extended Temperature, 8LD SOIC package.			
	MCP6295: MCP6295T:		b)	MCP6293-E/MS:	Extended Temperature, 8LD MSOP package.			
		(Tape and Reel) (SOIC, MSOP)	c)	MCP6293-E/P:	Extended Temperature, 8LD PDIP package.			
Temperature Range: E = -40°C to +125°C				MCP6293T-E/CH:	Tape and Reel, Extended Temperature, 6LD SOT-23 package.			
Package:		Small Outline Transistor (SOT-23), 5-lead	a)	MCP6294-E/P:	Extended Temperature, 14LD PDIP package.			
	CH = Plastic (MCP6		b)	MCP6294T-E/SL:	Tape and Reel, Extended Temperature, 14LD SOIC package.			
		DIP (300 mil Body), 8-lead, 14-lead	c)	MCP6294-E/SL:	Extended Temperature, 14LD SOIC package.			
	SL = Plastic	SOIC, (150 mil Body), 8-lead SOIC (150 mil Body), 14-lead TSSOP (4.4 mm Body), 14-lead	d)	MCP6294-E/ST:	Extended Temperature, 14LD TSSOP package.			
			a)	MCP6295-E/SN:	Extended Temperature, 8LD SOIC package.			
			b)	MCP6295-E/MS:	Extended Temperature, 8LD MSOP package.			
			c)	MCP6295-E/P:	Extended Temperature, 8LD PDIP package.			
			d)	MCP6295T-E/SN:	Tape and Reel, Extended Temperature, 8LD SOIC package.			

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System

Register on our web site (www.microchip.com) to receive the most current information on our products.

MCP6291/2/3/4/5

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westford, MA Tel: 978-692-3848 Fax: 978-692-3821

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355 Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

- · · · · ·

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Ballerup

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Massy Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Ismaning

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 **England - Berkshire** Tel: 44-118-921-5869

Fax: 44-118-921-5820

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.